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We consider the evolution of a single-atom wave function in a time-dependent double-well interferometer in
the presence of a spatially asymmetric potential. We examine a case where a single trapping potential is split
into an asymmetric double well and then recombined again. The interferometer involves a measurement of the
first excited state population as a sensitive measure of the asymmetric potential. Based on a two-mode ap-
proximation a Bloch vector model provides a simple and satisfactory description of the dynamical evolution.
We discuss the roles of adiabaticity and asymmetry in the double-well interferometer. The Bloch model allows
us to account for the effects of asymmetry on the excited state population throughout the interferometric
process and to choose the appropriate splitting, holding, and recombination periods in order to maximize the
output signal. We also compare the outcomes of the Bloch vector model with the results of numerical
simulations of the multistate time-dependent Schrödinger equation.
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I. INTRODUCTION

The evolution of a quantum system in a double-well po-
tential has been the subject of numerous theoretical studies.
These include treatments of Josephson-like oscillations �1,2�,
dynamic splitting �3�, and interference �4� of Bose-Einstein
condensates �BECs�. The interpretation of these effects is
based on the approach �5�, in which interference patterns are
seen to evolve as a result of successive boson measurements
which do not identify the originating condensate. The pro-
duction of cold atoms and BEC in microtraps on atom chips
�6–8� and in micro-optical systems �9� has stimulated a great
interest towards novel implementations of atom interferom-
eters �10–15� that are based on the use of double-well poten-
tials. Double-well atom interferometers �DWAI� of both the
single-atom and the BEC varieties are well suited to imple-
mentation on an atom chip. Here microfabricated structures
allow us a precise control on a submicron scale over the
splitting and merging processes. The key processes of split-
ting �16–18� and merging �19� of cold atomic clouds and
even interference of a BEC after splitting in a double well
�20–22� have been already demonstrated. Although the
implementation of a DWAI using a BEC can lead to a
�N-fold enhancement in precision measurements �23�, phase
diffusion �24� associated with mean field effects is of con-
cern �20�. Double-well interferometry with a single atom can
allow us a longer measurement time and in this regard has a
potential advantage. An on-chip single-atom interferometer
can be integrated with the source of atoms in a ground
state—the Bose-Einstein condensate—and be used for
sensitive measurements of gravitational fields. DWAI may
also be applied to measure collisional phase shifts induced
by the atom-atom interaction, which is useful for quantum
computation processes �25�.

Two proposed schemes of a single-atom DWAI involve
time-dependent transverse �10� and axial �11� splittings of a

trapping potential. An atom is initially prepared in the
ground state of a single symmetric trapping potential, which
is then split into a symmetric double well. A spatially asym-
metric potential is then applied and a nonadiabatic evolution
leads to transitions between ground and excited states. The
asymmetry is then switched off and the double well is re-
combined into the original potential. The population of the
excited state measures the effect of the asymmetric potential.
The DWAI can be considered as a quantum-state Mach-
Zehnder interferometer where the evolution of the quantum
state via the two separated wells is analogous to the propa-
gation of an optical field via two pathways.

However, these treatments ignore the effect of asymmetry
during the splitting and merging stages. In reality asymmetry
is always present and could be the result of imperfect hori-
zontal splitting �introducing a gravity-based asymmetry�, ex-
ternal spatially variable magnetic and electric fields or differ-
ent left and right trap frequencies. We show that the presence
of small asymmetries has dramatic consequences on the in-
terferometric process. We have produced a simple model in
terms of a Bloch vector evolution that enables us to consider
a splitting-holding-merging sequence involving a double
well and takes into account the presence of asymmetry at all
stages. The two key parameters are the energy gap between
the lowest two states of the symmetric component of the
trapping potential and an asymmetry parameter, which is re-
lated to matrix elements of the asymmetric component of the
potential. Nonadiabatic evolution only occurs during the
splitting and recombining stages when the torque vector
changes much more rapidly compared to the Larmor preces-
sion of the Bloch vector. It is important that the torque vector
remains constant during the holding stage, and that this pe-
riod is long compared to the splitting and recombination
times. In this case the final excited state population is a sinu-
soidal function of the holding time, with a period determined
via the asymmetry parameter.

In this paper we consider the dynamics of a single atom in
an asymmetric DWAI, with the basic theoretical framework
being outlined in Sec. II. Using a two-mode approximation
we develop a Bloch vector model for time-dependent DWAI
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�Sec. III� that provides an adequate description of the dynam-
ics of the splitting, holding, and recombination processes in
the presence of an asymmetric component, and is then used
�Sec. IV� in describing the interferometric process. The va-
lidity of the two-mode approach is explored in Sec. V
through the comparison of predictions of the Bloch vector
model with the results of direct numerical simulations of the
time-dependent multimode Schrödinger equation. A discus-
sion of results follows in Sec. VI and includes a scheme to
measure the population of the excited state. Theoretical
details are dealt with in the Appendix.

II. THEORETICAL FRAME

In general, the evolution of a single atom in an interfer-
ometer must be described using a three-dimensional quantum
treatment. However, for a system of cylindrical symmetry �as
is present in typical atom chip experiments� it is possible to
ignore excitations associated with the two tightly confined
dimensions, as long as the dynamics throughout the process
is restricted to the dimension of weak confinement �longitu-
dinal splitting�. In this system it is possible to reduce the
quantum treatment to that of a one-dimensional problem.

We consider the one-dimensional evolution of a single-

atom system due to a time-dependent Hamiltonian Ĥ�t� that

can be written as the sum of a symmetric Hamiltonian H0̂�t�
and an asymmetric potential V̂as�x̂�

Ĥ�t� = H0̂�t� + Vaŝ�x̂�

=
p̂2

2
+ V0̂�x̂,t� + Vaŝ�x̂� , �1�

V0̂�x̂,t� = �1 + ���t� −
x̂2

2
�2	1/2

, �2�

where a specific form for the symmetric potential V0̂ is cho-
sen �26�. The Hamiltonian and other physical quantities have
been written in dimensionless quantum harmonic oscillator
units associated with atomic mass m and angular frequency
�0. With the original quantities denoted by primes we have

x̂ =
x̂�

a0
, p̂ =

a0

�
p̂�,

t = �0t�, a0 =� �

m�0
. �3�

The dimensionless Hamiltonians, potentials, and energies are

obtained by dividing the original quantities by ��0. Vaŝ will
be taken as a linear function of x̂.

The symmetric potential depends on a time-dependent
splitting parameter �, whose change from zero to a large
value and back to zero again conveniently describes the split-
ting, holding, and recombination processes with periods Ts,
Th, and Tr, respectively. For zero � the symmetric potential
involves a single quartic well. When it is large a double

harmonic well appears with a separation between minima of
2�2�. For zero � and for large x the symmetric potential
approximates that for a quantum harmonic oscillator with
frequency �0 and mass m. Key results in the paper would
still apply if other suitable forms for the symmetric potential
are used.

We denote the eigenvectors of Ĥ as 
�i� and their energy
eigenvalues as Ei, where i=0,1 ,2 , . . ., and Ei+1�Ei. The cor-
responding quantities for the symmetric component of the

Hamiltonian, H0̂, will be denoted 
Si� and ESi. Both sets of
eigenvectors are orthonormal, and all energies and eigenvec-

tors are time dependent. H0̂ is symmetric and the ground
state 
S0� is symmetric and denoted as 
S�, while the first
excited state 
S1� is antisymmetric and denoted as 
AS�. Their
energies are denoted ES and EAS. The one-dimensional nature
of the system allows real eigenfunctions �i�x�, Si�x� to be
chosen. In this case the geometric phase �27� is zero.

We can illustrate the general behavior of the lowest few
energy eigenvalues �E0 ,E1 ,E2 ,E3 , . . . , � of the total Hamil-

tonian Ĥ as the splitting parameter is increased from zero to
a large value and back. At the beginning and the end of the
process when ��0 the energy eigenvalues are well sepa-

rated. Here the effect of asymmetry Vaŝ is small and the
eigenvalues and eigenvectors resemble those for the symmet-
ric Hamiltonian. When the splitting parameter increases and
the trapping potential changes to a double well, pairs of ei-
genvalues �E0 and E1, E2 and E3, etc.� become very close. At
this stage the quantum system is very sensitive to the pres-

ence of Vaŝ which breaks the symmetry, allows transitions
between 
�0� and 
�1� to occur, and causes the eigenvectors

�0� and 
�1��as well as 
�2� and 
�3�� to be localized in the
individual wells in this far split regime.

Initially, the atom is prepared in the lowest energy eigen-
state 
�0� of the single well. Transitions to excited states are
suppressed if the time scale for splitting and recombination is
much longer than the inverse frequency gap between the rel-
evant states. The energy gap between E0 and E2 is always
larger than the gap between E0 and E1, and by choosing
appropriate time scales we can isolate the two lowest energy
eigenstates �
�0� and 
�1�� from higher excited states �
�2�,

�3�, etc.�, but still allow for transitions between the two
lowest energy eigenstates to occur. As a consequence the
dynamics of the DWAI can be treated under the two-mode
approximation, in which only the two lowest energy eigen-

states of the total Hamiltonian Ĥ and the symmetric Hamil-

tonian H0̂ need to be considered. In this case the first excited
state probability �a measurable quantity� can vary from zero
to one. A proposal for measuring the excited state population
is outlined in Sec. VI.

Using the two-mode approximation expressions for the
lowest two energy eigenvalues �E0 ,E1� and eigenvectors

�
�0� , 
�1�� for the Hamiltonian Ĥ will be obtained. A stan-
dard matrix mechanics approach will be used, but instead of
using the symmetric potential energy eigenvectors 
S�, 
AS�
as basis vectors, we use the left, right �L-R� basis vectors 
L�,

R�, which are defined by
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L� =
1
�2

�
S� + 
AS�� ,


R� =
1
�2

�
S� − 
AS�� . �4�

The states 
L�, 
R� are orthonormal and for large � corre-
spond to an atom localized in the left or right well, respec-
tively. However, even for a single well the L-R basis is still

applicable. The matrix for the Hamiltonian Ĥ in the L-R
basis is given by

�Ĥ�L−R =
1

2
�ES + EAS��1 0

0 1

 +

1

2
�− Vas − �0

− �0 + Vas

 , �5�

where the order of the columns and rows is L ,R and we
define the convenient real quantities

�0 = EAS − ES, �6�

Vas = �R
Vaŝ
R� − �L
Vaŝ
L�

=− ��S
Vaŝ
AS� + �AS
Vaŝ
S�� . �7�

The derivation of the Hamiltonian matrix uses the
symmetry properties of 
S�, 
AS�, and the reality of the
eigenfunctions. The total energy for the symmetric Hamil-
tonian is given by ES+EAS, and the energy gap is given
by �0. The quantity Vas describes the asymmetry of the
system, and would be zero if the Hamiltonian was symmet-
ric. The second equation relates Vas to off-diagonal elements
of the asymmetric contribution to the Hamiltonian, indicat-
ing its role in causing transitions between the eigenstates

S�, 
AS� of the symmetric Hamiltonian. The Hamiltonian
matrix �5� is analogous to that for a two-level atom interact-
ing with a monochromatic light field �28�. The symmetric

Hamiltonian transition frequency �0 is analogous to the
Rabi frequency, while the quantity Vas is analogous to
the detuning.

The energy eigenvalues for the total Hamiltonian Ĥ are
obtained from the determinental equation as the eigenvalues

of the matrix �Ĥ�L−R, and are given by
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FIG. 1. Energy difference � between ground and first excited

states �solid line� for Vaŝ=0.02x̂ as a function of the splitting pa-
rameter �. Dotted line—energy difference �0 for symmetric Hamil-
tonian, dashed line—asymmetry quantity Vas.
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FIG. 2. Stationary eigenfunctions of the ground state �dashed-
dotted line� and the first excited state �dotted line� for different
values of the splitting parameter � � 1 �a�, 2.5 �b�, and 5 �c�. The
potential V�x� is shown as the solid line.
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E0 = 1
2 �ES + EAS� − 1

2� ,

E1 = 1
2 �ES + EAS� + 1

2� , �8�

where the quantity � gives the energy gap for the total

Hamiltonian Ĥ and is defined by

� = ��0
2 + Vas

2 = E1 − E0. �9�

In terms of the laser-driven two-level atom analogy, � would
be analogous to the generalized Rabi frequency.

The orthonormal energy eigenvectors for the total Hamil-

tonian Ĥ are given by


�0� =�1 + V

2

L� +�1 − V

2

R� ,


�1� =�1 − V

2

L� −�1 + V

2

R� , �10�

where the effect of asymmetry is now represented by the
variable

V =
Vas

�
. �11�

On substituting for 
L�, 
R� the eigenvectors for the total
Hamiltonian can be related to those for the symmetric

Hamiltonian H0̂. At the beginning and end of the interferom-
eter process we find that the asymmetry parameter Vas is
small compared to the symmetric energy gap �0. For V�1
the eigenvectors 
�0�, 
�1� become similar to 
S� and 
AS�,
respectively. For Vas��0 �V�1�, the eigenvectors 
�0�,

�1� become equal to 
L�, 
R�, respectively, the localized
eigenvectors for the separate wells.

The behavior of the quantities �, Vas, and �0 as the split-
ting parameter � is changed is shown in Fig. 1 for the case
where the asymmetric potential Vas�x� varies linearly with

the coordinate x, specifically with Vaŝ=0.02x̂. The symmetric
energy gap �0 becomes close to zero for �	4 and then the
actual energy gap � is approximately given by Vas. The en-
ergy eigenfunctions �0�x� and �1�x� for different splitting

parameters � are depicted in Fig. 2, again with Vaŝ=0.02x̂.
The behavior of the potential V�x�=V0�x�+Vas�x� is also
shown. For small � �Fig. 2�a�� the potential is a single well
and the eigenfunctions are approximately symmetric and an-
tisymmetric. For larger � �Fig. 2�c�� the potential is a double
well, which still appears to be symmetric. However, even
with a small asymmetry in the potential the eigenfunctions
are no longer symmetric and antisymmetric, but instead are
each localized in separate wells. This sensitivity of the
eigenfunctions to a small asymmetry is critical to the perfor-
mance of the present interferometer.

III. BLOCH VECTOR MODEL

We can express a general time-dependent normalized state
vector 

� as a quantum superposition of the states 
L� and

R�



�t�� = CL
L� + CR
R� . �12�

Our interferometer will be described in terms of the Bloch
vector and its dynamics determined via Bloch equations. We
now introduce Pauli spin operators and the Bloch vector.

Time-dependent Pauli spin operators �â �a=x ,y ,z� are de-
fined in the Schrödinger picture

�x̂ = �
R��L
 + 
L��R
� ,

�ŷ =
1

i
�
R��L
 − 
L��R
� ,

�ẑ = �
R��R
 − 
L��L
� . �13�

From its matrix representation in the L-R basis �5�, the

dimensionless Hamiltonian operator Ĥ in the Schrödinger
picture can be expressed in terms of the Pauli spin operators
as

Ĥ = 1
2 ��01̂ + �x�x̂ + �y�ŷ + �z�ẑ� , �14�

where

�0 = �ES + EAS� ,

�x = − �0, �y = 0, �z = Vas. �15�

It is convenient to introduce a so-called torque vector, de-

fined as �� = ��x ,�y ,�z�.
The Bloch vector is defined to have components which

are the expectation values of the Pauli spin operators �â in
the quantum state 

�. These components will be denoted as
�a. Hence in the Schrödinger picture

�a = �
�t�
�â�t�

�t�� �a = x,y,z� . �16�

The Bloch vector is defined as �� = ��x ,�y ,�z�. The Bloch
components are bilinear functions of the amplitudes CL and
CR.

The evolution of the DWAI system is now described by a
set of real variables �x ,�y ,�z and each of these variables has
a certain physical meaning. The component �z is a measure
of the imbalance of the atomic population of the localized
states 
L�, 
R�. The component �x is a measure of the atomic
population imbalance between the delocalized states 
S�,

AS�, as can be seen if the quantum state is expanded in the
symmetric basis. For �x= +1 all the population is in the sym-
metric state 
S�, for �x=−1 it is all in the antisymmetric state

AS�. It is thus a measure of the excitation of the first excited
state in the unsplit trap regime.

Equations for the components of the Bloch vector can be
obtained from Heisenberg equations for the Pauli spin opera-
tors. The derivation must take into account the present situ-
ation where the Pauli spin operators are explicitly time de-
pendent since the basis vectors 
L�, 
R� change with time.
This differs from the standard situation of time independent
basis vectors �28,29�. However, the additional term in the
Heisenberg equations can be shown to contribute zero to the
Bloch equations due to the two eigenfunctions in the sym-
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metric basis being real and having opposite symmetry �see
Appendix �. The Bloch equations are given by �dt�d /dt�

dt�x = − Vas�y ,

dt�y = Vas�x + �0�z,

dt�z = − �0�y , �17�

and can be solved numerically using the Runge-Kutta
algorithm. In vector notation the Bloch equations are

dt�� = �� 
 �� . �18�

This form of the Bloch equations is a direct consequence
of the equivalence of the two-mode double-well interferom-
eter to a spin 1

2 system. The Bloch vector precesses at the
Larmor frequency around the torque vector, which in detail
is

�� = �− �0,0,Vas� . �19�

If there is no asymmetry, the x component of the Bloch
vector remains unchanged, while its component in the y-z
plane just rotates about the x axis �Fig. 3�.

IV. MODEL OF A SINGLE-ATOM
DOUBLE-WELL ATOM INTERFEROMETER

In the single-atom interferometer under consideration the
atom is always located in a trapping potential, which changes
from a single well to a double well—which, in general, is
slightly asymmetric—and back again to the original single
well. The interferometer is used to measure the effects of this
asymmetry, the cause of which may be of measurable interest
�e.g., as in a gravity gradiometer�. The atom is initially in the
ground state 
�0�0�� of the original unsplit potential, and as
Vas is then small compared to �0 , 
�0�0�� is then approxi-
mately the same as 
S�0��. The population of the excited state
at the end of the recombination process is the measurable
interferometer output. The probability P1 of finding the atom
in the upper energy eigenstate at any time is given by

P1 = ���1

��2, �20�

and this will remain zero unless an asymmetry is present
together with suitably short splitting and recombining stages
for the interferometer process—so that transitions occur

between 
�0� and 
�1� due to the presence of Vaŝ.
We find that

P1 =
1

2
�1 + �zV − �x

�1 − V2� =
1

2
+

1

2�
�� · �� . �21�

At the beginning and end of the interferometer process
V�1 and hence the probability P1 only depends on the x
component of the Bloch vector. The probability P1�T� thus
depends on how this component has changed from its initial
value of 1. We can, therefore, describe the dynamical behav-
ior of the single-atom interferometer in terms of the evolu-
tion of the Bloch vector during the splitting, holding, and

recombining stages. At the start of the process the Bloch and
torque vectors are antiparallel �Fig. 3�a�� and approximately

x
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Ω

σ

(a)

x

y

z

Ω
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(b)

x

y

z Ω

σ

(c)

FIG. 3. Evolution of the Bloch vector �� and the torque vector ��

at different moments of the splitting stage: �a� at the beginning

when �0�Vas and �� ��−�0 ,0 ,0�, �b� when �0=Vas, and �c�,
when Vas��0 and �� ��0,0 ,Vas�.
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aligned with the x axis. For small values of the splitting
parameter � the absolute value of the torque vector is mainly
determined by the symmetric energy gap �0 �Fig. 1� and its
direction remains along the −x direction. The position of the
Bloch vector remains mostly along the +x direction �Fig.
3�b�� during early stages of the splitting process. When the
splitting parameter is increased further the decreasing energy
gap �0 becomes comparable with and later much smaller
than the asymmetry quantity Vas. As a result the torque vec-
tor rotates in a x-z plane until it is aligned along the z direc-

tion ��� ��0,0 ,Vas��. It is important to make this change
nonadiabatically so that the Bloch vector does not follow the
torque rotation. If the Bloch vector were to follow the
changes of the torque vector adiabatically the atom will al-
ways stay in the ground state and no interference would be
observed.

During the holding stage the torque vector is constant and
the Bloch vector precesses around the torque vector with a
constant angular velocity Vas, and hence both the x and y
components oscillate with a period 2� /Vas �Fig. 3�c��. In an
ideal double-well interferometer the splitting and recombina-
tion stages are short and the value of the x component does
not change much during these stages, so that �x�T� �which
defines the final excited state population� is basically given
by its value at the end of the holding period. The simple
behavior during the holding period indicates that the excited
state population would have a period 2� /Vas considered as a
function of holding time. A similar description in terms of
the evolution of a Bloch vector also applies to the scheme
described in Ref. �11�, though the dynamical behavior of the
Bloch vector is different.

The behavior of the interferometer may also be described
in terms of time-dependent states 
L�, 
R�, which during the
holding period represent atoms localized in the left and right
wells. The interferometer process involves the transition

S�0�� →
AS�T��, which involves two pathways 
S�0��
→ 
L�T /2��→ 
AS�T�� and 
S�0��→ 
R�T /2��→ 
AS�T��, in-
volving two possible localized intermediate states associated
with the left or right wells. The overall transition amplitude
is the sum of amplitudes for the two pathways, and depend-
ing on the relative phase between these amplitudes either
constructive or destructive interference may occur. For maxi-
mum contrast it is desirable that the magnitudes of the two
partial amplitudes be equal, so that during the holding period
the populations of the left and right well states should be
about the same. After optimal splitting the z component of
the Bloch vector �z should be kept close to zero during the
holding period, however a phase difference between the lo-
calized states accumulates. Only at the end of the recombi-
nation stage this phase is translated into the population of the
excited state.

V. RESULTS OF NUMERICAL SIMULATIONS

We studied the evolution of a Bloch vector and the
population of the excited state by solving Eqs. �17� numeri-
cally. The splitting parameter � is changed linearly from zero
up to a maximum �max during the splitting period. It is then
held constant at �max during the holding period, and

then changed linearly to zero during the recombination
period. The dynamical behavior of the Bloch vector
components is shown in Fig. 4�a� along with the time
dependence of the asymmetry parameter V=Vas /�, the
splitting parameter � and the excited state population P1

�Fig. 4�b��. The parameters used are Vaŝ=0.02x̂, �max=12.5,
and Ts=20, Th=20, Tr=20 in dimensionless harmonic
oscillator units. Here we observe complex oscillatory
behavior for the x and y components of the Bloch vector
which occurs during the splitting and merging stages. During
the holding stage they exhibit simple periodic variations
with frequencyVas=0.2. At the same time the z component
develops a small negative value during splitting and
increases the absolute value even further during merging.
The x component reaches a negative value of −0.9 at the
end of the process. This corresponds to an excited state
population of 0.95 and represents a case of constructive
interference.

By monitoring the behavior of P1 during the interferomet-
ric process we can see when nonadiabatic evolution occurs.
The population P1 changes from 0 to 0.47 �Fig. 4�b�� at the
beginning of the splitting process and does not reach the
optimal value 1

2 as a result of the nonzero z component of the
Bloch vector. The variable P1 does not change during the
adiabatic precession of the Bloch vector around the torque
vector during the rest of the splitting, holding, and the begin-
ning of recombining stages. It again exhibits drastic changes
in a short period during the remerging when the torque vec-
tor rotates rapidly and the Larmor frequency is relatively
small.
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FIG. 4. �a� Time evolution of the Bloch vector components �x

�solid line�, �y �dashed line�, and �z �dotted line� for Ts=Th=Tr

=20 and �max=12.5; �b� time evolution of the first excited state
population P1 �dotted line�, the asymmetry parameter V �dashed
line�, and the splitting parameter � /�max �solid line�.
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It is tempting to limit the evolution of the Bloch vector
and the relevant phase accumulation during the splitting
and merging stages by making these stages shorter. However,
this can lead to excitations of higher excited states. We
have compared outcomes of the Bloch vector model with
the results of the numerical solution of a multistate
Schrödinger equation using the XMDS code �30�. The
behavior of the excited state population P1�T� at the end
of the interferometer process as a function of the holding

period Th is shown in Fig. 5 for the parameters Vaŝ=0.02x̂,
�max=12.5, Ts=Tr=5 �Fig. 5�a��, Ts=Tr=20 �Fig. 5�b��,
and Ts=Tr=200 �Fig. 5�c��. In all cases the sinusoidal behav-
ior of the excited state population as a function of the
holding period can be seen. Situations ranging from
complete destructive interference to perfect constructive
interference are both present. For short splitting times �Fig.
5�a�� we observed a discrepancy between the two models.
Multistate numerical simulations indicate the presence of
populated higher energy states which the Bloch vector model
ignores. The full numerical calculations show an irregular
high frequency modulation of the fundamental frequency

signal and a reduced maximum population of the first excited
state.

For splitting and merging times Ts=Tr=20 �Fig. 5�b��
both models show excellent agreement indicating a simple
sinusoidal variation of the first excited state population with
holding time. This simple behavior is also observed for long
splitting time �Fig. 5�c��, but with significantly reduced am-
plitude of the oscillations. The reduced fringing is attributed
to the onset of adiabatic following of the Bloch vector during
splitting and recombination which is shown by the presence
of a nonzero �z component �Fig. 4�a��. We noted that our
numerical solution of the Bloch equation is robust with re-
gard to the variations of the signal but is fragile regarding the
phase. The error was accumulated during the splitting stage
as a result of Vas�0 in a merged trap and will scale with the
splitting time.

In the asymmetric double-well potential the ground state
eigenfunction will predominantly occupy the lower well, and
the excited state eigenfunction will be localized in the upper
well �Fig. 2�c��. In the slow splitting regime the onset of the
adiabatic evolution will lead to the unbalanced distribution
of the atomic wave function between the wells, which in turn
leads to a reduction in the measured signal. In application to
interferometry it can be seen as intrinsic which-way informa-
tion when the atom predominantly follows one path after the
splitting. In general,



� = a
�0� + b
�1� + 
�i� , �22�

where 
�i� is a linear combination of all other excited states.
We define a filling factor

F = 2ab , �23�

which will describe the balance of ground and excited states
populations. The dependence of the filling factor on splitting
time is shown in Fig. 6 for a splitting of �=12.5 and differ-
ent asymmetries. The results of the Bloch model �dotted line�
and the multistate numerical simulations �solid line� show
good agreement for splitting times Ts�20. For shorter split-
ting stages the two-mode approximation fails and excitations
into higher modes take place. In the case of the high asym-

metry Vaŝ=0.1x̂ �Fig. 6�d�� we observe a significant devia-
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model are represented by solid lines and outcomes of full numerical
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tion between outcomes of two models. For large values of
the asymmetry frequency Vas it is impossible to adiabatically
isolate two lower states and the transitions to higher states
have to be taken into account.

VI. DISCUSSION AND CONCLUSIONS

We have applied a Bloch vector model to describe the
quantum-state interference of a single-atom wave function in
a time-variable asymmetric double-well potential. The prob-
ability of finding the atom in the first excited state is closely
associated with the magnitude of the spatially dependent ex-
ternal potential and could be used as a measure of the applied
asymmetry. Transitions between ground and excited states
occur during the splitting and recombination stages. Larmor
precession of the Bloch vector during the holding stage is
induced by the asymmetry, will effect an interferometric
phase, and determine the final value of the excited state
population. The evolution of the Bloch vector during the
splitting and merging stages is also important because it will
affect the measurable probability P1. We have also shown
that special requirements apply to the duration of the split-
ting and merging stages in order to avoid excitation of higher
modes for short times and partial adiabatic following if the
splitting is too long. Both these effects lead to a decrease of
the measured signal. Interestingly enough they do not affect
the contrast of the interference fringes if the first excited state
is not initially populated.

Adiabatic evolution of the Bloch vector can offer a new
way to measure the first excited state population after the
double-well interferometric process. We have already men-
tioned that in the far-split regime the excited state wave func-
tion does not overlap with the ground state wave function
and will predominantly occupy the higher energy well �Fig.
2�c��. If at the end of the nonadiabatic splitting, phase evo-
lution, and nonadiabatic recombination process we also add
an additional stage of adiabatic splitting in a known asym-
metrical potential, then the wavefunctions of the two states
will be spatially separated. For recording the output P1 we
now simply measure the population of the higher energy
well. To shorten the adiabatic evolution time we need to
apply the highest available asymmetry �Fig. 6�.

ACKNOWLEDGMENTS

We thank T.D. Kieu for fruitful discussions, and T.
Vaughan and P. Drummond for the introduction to the
XMDS code. This work has been supported by the ARC
Centre of Excellence for Quantum-Atom Optics.

APPENDIX: DERIVATION OF BLOCH EQUATIONS

The state vectors at time t and at time 0 are related via the

unitary evolution operator U�t�̂ as 

�t��=U�t�̂ 

�0��. Op-
erators in the Heisenberg and Schrödinger pictures are re-

lated via Û as ��̂�H= �Û�†��̂�S�Û�. The expectation values of

operators in the two pictures are related as ��̂�
= �
�t� 
 ��̂�S 

�t��= �
�0� 
 ��̂�H 

�0��.

The equation of motion for the Bloch vector components
can be derived using the Heisenberg picture via

d

dt
�a = �
�0�


d

dt
��â�H

�0�� , �A1�

where the Heisenberg equation of motion for the Pauli spin
operator in dimensionless units is

d

dt
��â�H = − i���â�H,�Ĥ�H� + � �

�t
��â�
H

. �A2�

The derivation involves the use of the commutation rules
for the Pauli spin operators. For the first term, we have after

substituting for Ĥ from Eq. �14�

− i���â�H,�Ĥ�H� =
− i

2 ��0��â, 1̂� + �
b=x,y,z

�b��â,�b̂�
H

= ��� 
 ��̂� �H�a. �A3�

Hence the contribution from the first term in Eq. �A2� is
given by

�
�0�

d

dt
��â�H

�0��1 = ��� 
 �� �a. �A4�

For the contribution from the second term in Eq. �A2�, we
may first write

�â= �
A,B=L,R

KAB
a 
A��B
, where the KAB

a are time independent

coefficients that can be read from Eqs. �13�, and then

� �

�t
��â�
H

= �
A,B=L,R

KAB
a �� �

�t

A�
�B
 + 
A�� �

�t
�B

�H

.

�A5�

Using Eq. �12� for the state vector and reverting to the
Schrödinger picture we have

�
�0�
��t��â��H

�0��2 = �
�t�
� �
A,B=L,R

KAB
a ���t
A���B
 + 
A�


��t�B
��	S


�t��

= �
A,B,D=L,R

KAB
a �CD

* CB�D
��t
A��

+ CA
*CD��t�B
�
D�� . �A6�

To evaluate this result, a consideration of the four quan-
tities �A 
 ��t 
B��, where �A ,B=L ,R� is required, noting also
that ��t�B 
 � 
A�= ��A 
 ��t 
B���*. These four quantities can be
expressed in terms of related matrix elements in the symmet-
ric basis �Si 
 ��t 
Sj��, where �i , j=0,1�. Note 
S0��
S� and

S1��
AS�.

Using the normalization and reality property, we first
show that the diagonal terms �Si 
 ��t 
Si�� are zero. For the
off-diagonal terms �Si 
 ��t 
Sj��, these are zero because 
Si�
and �t 
Sj� have opposite symmetry. From these consider-
ations we find that all matrix elements �A 
 ��t 
B��, where
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�A ,B=L ,R�, are zero. Hence the second contribution to the
equation of motion for the Bloch vector component is zero

�
�0�

d

dt
��â�H

�0��2 = 0. �A7�

Combining both contributions we find that

d

dt
�a = ��� 
 �� �a. �A8�

Thus the Bloch equations can be expressed in vector form as
in Eq. �18� and in detail as in Eqs. �17�.
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